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Abstract 

 

The objective of on-line flagging in this paper is to perform an interactive assessment of geosynchronous satellites 

anomalies such as cross-tagging of satellites in a cluster, solar panel offset change, etc. This assessment will utilize a 

Bayesian belief propagation procedure and will include an automated update of the baseline signature data for the 

satellite, while accounting for the seasonal changes. Its purpose is to enable an ongoing, automated assessment of 

satellite behavior through its life cycle using the photometry data collected during the synoptic search performed by 

a ground or space-based sensor as a part of its metrics mission. The change in the satellite features will be reported 

along with the probabilities of type I and type II errors.  

 

The objective of adaptive sequential hypothesis testing in this paper is to define future sensor tasking for the purpose 

of characterization of fine features of the satellite. The tasking will be designed in order to maximize new 

information with the least number of photometry data points to be collected during the synoptic search by a ground 

or space-based sensor. Its calculation is based on the utilization of information entropy techniques. The tasking is 

defined by considering a sequence of hypotheses in regard to the fine features of the satellite. The optimal 

observation conditions are then ordered in order to maximize new information about a chosen fine feature.  

     

The combined objective of on-line flagging and adaptive sequential hypothesis testing is to progressively discover 

new information about the features of geosynchronous satellites by leveraging the regular but sparse cadence of data 

collection during the synoptic search performed by a ground or space-based sensor.  
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1.0 Introduction 

This work is a continuation of [1]. The notation in this paper is derived from [1]. It builds upon the various concepts, 

methods, assumptions and procedures defined in [1]. These include the time slider, the two facet model, Brightness 

Ratio, Cluster-based evidence, Model-based evidence, Bayesian belief propagation, near-real time assessment of 

change, Inversion Model, Predictive Model, and Statistics Model. This paper may be viewed as new work on the 

decision to move the time slider [1], which is required in order to update the baseline signature (brightness) data for 

a satellite.  

 

Reference 1 describes a Bayesian belief propagation procedure for the detection and resolution of cross-tag between 

two satellites. Such resolution is necessary in order to correctly associate new data for each satellite. This paper 

extends this data association procedure to multi-satellite cross-tag detection and resolution, including the 

probabilities of false positive and false negative.  

 

Fig. 2 - Fig. 4 show a notional baseline and new data for three satellites that comprise a notional cluster. A cluster is 

a group of satellites that are normally simultaneously captured in a sensor’s field of view as shown in Fig. 1. The 

three satellites are denoted as S1, S2 and S3, respectively. The baseline data is denoted with blue markers and the new 

data is denoted with red markers. The data has large gaps, which correspond to the daytime gap in data collection. 

The same data is plotted in Fig. 5 with respect to the orbit angle, which is the same as the longitudinal phase angle 

except that it is computed with respect to the orbital plane of the satellite instead of the equatorial plane. Note how 

the brightness data for the three satellites overlaps with each other making it difficult to correctly associate the data 

on the basis of brightness values alone. If the satellites maneuver during daytime, the new data may be cross-tagged. 

The data in Fig. 2 - Fig. 4 may present itself in six different ways (e.g. S1 tagged correctly but S2-S3 are cross-

tagged, or S3 tagged correctly but S1-S2 are cross-tagged, or S1 is tagged as S2, S2 is tagged as S3 and S3 is tagged as 

S1, etc.). The specific manner in which the data may present itself is unknown a priori. Accordingly, the methods in 

this paper are designed to resolve the cross-tag irrespective of how the data presents itself.  

 

 

 

Fig. 1. Sensor Field of View 

 



3 

AMOS Technical Conference 2015 

 
Fig. 2. Satellite S1 Apparent Magnitude over Time 

 

 
Fig. 3. Satellite S2 Apparent Magnitude over Time 
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Fig. 4. Satellite S3 Apparent Magnitude over Time 

 

 
Fig. 5. Signatures of the Three Satellites in the Cluster 

 
Reference 1 computes belief in cross-tag resolution using Bayes theorem, cluster-based evidence and model-based 

evidence. This work resolves cross-tag using three methods (Z-test for dependent data, classical sequential analysis 

and Brownian motion drift analysis). It analyzes the sequence of values of Brightness Ratio (rk) and P(NOM | rk) for 

this purpose. It also makes recursive use of model-base evidence.    

  

2.0 Background 

 
Change is defined as the difference between the observed behavior and the expected behavior. The expected 

behavior is defined by the user on the basis of prior data. Typical methods utilized in order to determine the 

expected behavior are a physics-based model, statistical model, or data interpolation. In this work, we use a physics-

based model, which is based on the inversion of prior data. The change is expressed in terms of a ratio, 𝑟𝑘, where k 

is the observation number [1], which is denoted as the Brightness Ratio. Specifically:  



5 

AMOS Technical Conference 2015 

 

𝑟𝑘 =  
𝐼𝑂𝑘

𝐼𝑀𝑘

− 1 

 

Where 𝐼𝑂𝑘 is the observed single point brightness, 𝐼𝑀𝑘 is the expected single point brightness. Under ideal, nominal 

conditions, the ratio of 𝐼𝑂𝑘 and 𝐼𝑀𝑘 would equal one. The values of 𝑘 < 0 comprise the baseline data and 𝑘 ≥ 0 is 

new data (i.e. the green and yellow markers in Fig. 6, respectively). The time slider is located after 𝑘 = −1, or at the 

end of the baseline data. Alternately, the time slider separates the baseline data and new data. The definition of 𝑟𝑘 
includes a subtraction by one so that its expected value, 𝐸(𝑟𝑘) ≈ 0 under ideal conditions. The methods, 

assumptions and procedures are defined by considering that 𝐸(𝑟𝑘) ≠ 0 when change occurs. The nonzero value of 

𝐸(𝑟𝑘) is treated as a measure of bias between the expected brightness and observed brightness.  

 

 
Fig. 6. Schematic of Time Slider Movement 

 

The two-facet model is used as the Inversion Model. It represents a three-axis stabilized satellite as two facets, 

namely a body facet that points to nadir and a solar panel facet that tracks the sun as seen in Fig. 7. This Inversion 

Model may be considered a 0th order model that captures basic truth about the satellite, while not explicitly 

accounting for the fine features of the satellite (e.g. antenna, dishes, self-occlusions). The benefit of this model is 

that it can be utilized to estimate the body and panel optical behavior for any three-axis stabilized satellite. Its 

shortcoming is that its accuracy depends on the complexity of the satellite’s geometry. Thus, there typically is bias 

in the values of the Brightness Ratio, depending on the observation conditions as follows in [1], and the analysis is 

limited to a subset of permissible orbit angle values. Specifically: 

 

 At small phase angles, the solar panel specular behavior dominates and the bias is larger. 

 At medium phase angles (< 75o), the body diffuse behavior dominates. The bias is small except where there are 

brightness contributions from features that arise from self-occlusion and body attachments.  

 At phase angles close to 90o, the specular glints from body attachments dominate the character of brightness and 

the bias can be larger.  

 The analysis is not performed for phase angles greater than 90o.   
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Fig. 7. Two-facet model 

 
Thus, the value of 𝐸(𝑟𝑘) is nearly zero for each satellite for most orbit angles. There are regimes of orbit angles 

where the Brightness Ratio is large. These represent the observation conditions where the Inversion Model needs 

improvement, which could be attained by adding higher order terms to the basis functions for the two facets in order 

to represent the fine features or by defining additional facets to represent the satellite geometry. Note that if there 

was no change in a satellite, sensor orbit, and solar declination, the character of 𝐸(𝑟𝑘) is expected to remain 

unchanged because the Inversion Model is ‘invariant’. If there was change in the satellite, observation conditions, or 

illumination condition, the value of 𝐸(𝑟𝑘) can change. It is necessary to assess if this change is nominal (NOM) 

(unchanged from the baseline) or anomalous (ANOM) (changed from the baseline). The value of 𝐸(𝑟𝑘) can become 

ANOM due to cross-tag. This is because, in the calculation of the brightness ratio, the denominator (or the predicted 

value of satellite brightness by the Predictive Model) is for a different satellite.   

 

The goal is to detect change, characterize it as NOM or ANOM and provide its resolution as quickly as possible and 

to be able to provide a measure of confidence for the assessment. In order to detect change, we will use three 

different methods to analyze the data sets. However, in each method, we will be using hypothesis testing to evaluate 

our results. Each hypothesis test must have a specified null hypothesis, alternative hypothesis, test statistic, 

significance level (alpha, or probability of type I error), and when applicable beta (probability of type II error) 

before beginning. The null hypothesis, denoted as 𝐻𝑜, defines a state where no change has occurred. The alternative 

hypothesis, denoted as 𝐻𝑎, defines a state where change has occurred. The test statistic used in each of the methods 

involves the sample mean.  

  

To assign a confidence level to our calculations, we must designate specific values for alpha and beta. The value of 

alpha is equivalent to the probability of a type I error. A type I error is when the null hypothesis is rejected and the 

alternative hypothesis is accepted, when in reality the null hypothesis is true. In other words, the test leads the user 

to assess that the satellite has changed, when the satellite state is still NOM (i.e. unchanged from the baseline). A 

false positive is the event that the test concludes that a change has occurred, when in reality no change has occurred 

and the satellite state is NOM. Or, a false positive is a type I error. 

 

𝛼 = 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 =  𝑃(𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟)

=  𝑃(rejecting the null hypothesis and accepting the alternative hypothesis,  

when in reality the null hypothesis is actually true) 

 

Beta is defined to be the type II error. A type II error is to accept the null hypothesis and reject the alternate 

hypothesis, when in reality the alternate hypothesis is true. In other words, this is when the hypothesis test concludes 

the satellite state to be NOM (i.e. same as the baseline), when in reality a change has occurred. A false negative is 
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when the test concludes the satellite state to be NOM or that nothing has changed as compared to the baseline, when 

in reality the satellite state has changed. Thus, a false negative is a type II error. 

 

𝛽 = 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟) = 𝑃(accepting the null hypothesis, when in reality the null hypothesis is false) 

3.0 Composite Hypothesis Testing 

In order to detect anomalies, we can utilize multiple methods and then combine their results using a composite 

hypothesis test to obtain one final resolution. Three different methods will be described in Section 4.0 and any 

combination of these methods can be combined into a composite hypothesis test. In the examples in Section 8.0, the 

three methods used in the composite hypothesis test will be the Z-test for dependent data using the 𝑟𝑘 values, the Z-

test for dependent data using the P(NOM|𝑟𝑘) values, and the sequential analysis using either the 𝑟𝑘 or Δ𝑟𝑘 values, 

where Δ𝑟𝑘= 𝑟𝑘- 𝑟𝑘−1. As described in the next section, the Z-test for dependent data using the 𝑟𝑘 values makes no 

assumptions for the data and provides a value for P(False Positive). This method is derived from the physics based 

model.  The Z-test for dependent data using the P(NOM|𝑟𝑘) values also makes no assumptions for the data and 

provides a value for the P(False Positive). However, it is derived from the Bayesian belief propagation. The 

sequential analysis using either the 𝑟𝑘 or Δ𝑟𝑘  values assumes independence for successive points of data and 

provides a value for the P(False Positive) and P(False Negative). This method is also derived from the physics based 

model. 

 

Once we obtain the results for all three tests for an observation, we compare the results from the different tests. If the 

sequential analysis method determines we need to continue sampling, then no decision is made, and we wait for the 

next observation. If the sequential analysis comes to a conclusion of NOM or ANOM and all three tests agree a 

satellite is NOM or ANOM, then we can make that conclusion as shown in Fig. 8. However, if the tests do not agree, 

then we can make no conclusion about that satellite. If all satellites in a cluster are determined to be NOM, we can 

update the time slider as explained in Section 8.9 and continue evaluating observations. If a satellite is concluded to 

be ANOM, then we will try to resolve what changed in that satellite. One way to do this is by using the cross-tag 

resolution method described in Section 8.8. Once all cross-tags and changes are resolved, we can continue collecting 

data.  

 

 

 
Fig. 8. Composite Hypothesis Testing Flow Chart 

 
Although Fig. 8 only illustrates three possible cases, each method can result in multiple outcomes. If we considered 

all possible outcomes for each of the three methods, the total number of outcomes would be quite large. For the 

purpose of this assessment, we are only concerned with the result when all three tests produce the same outcome. 
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Thus, Fig. 8 depicts the outcomes this paper will focus on. We must also note that there are two separate methods 

that can be used for the sequential analysis. If 𝑟𝑘 is independent and has an approximately normal distribution then 

Brownian motion drift analysis is used. If 𝑟𝑘 is independent but does not have an approximately normal distribution 

then the classical sequential analysis method is used. This process is illustrated in Fig. 9. 

 

 
Fig. 9. Sequential Analysis Flow Chart 

 

4.0 Hypothesis Testing Methods  
 

The detection of change is performed using either the value of 𝑟𝑘 or Δ𝑟𝑘 and by using the results of the Bayes belief 

calculation (i.e. P(NOM|𝑟𝑘)). There are three methods: 

 

1. Z-test for dependent data [1] 

2. Classical sequential analysis: This is used when 𝑟𝑘 is independent of  𝑟𝑘−1. 

This provides the ability to stop after enough observations have been taken in order to make a decision 

about the hypotheses based on the user-defined values of the type I and type II errors [2].  

3. Brownian motion drift analysis: This is an application of sequential analysis that is applied to the observed 

process (rk) interpreted as a Brownian motion in order to determine whether or not the drift is no longer 

zero. The procedure is used when Δ𝑟𝑘  is independent of Δ𝑟𝑘−1 and both have a normal distribution. This 

analysis also provides the ability to stop after a finite number of observations based on the user-defined 

values of the type I and type II errors [3].  

 

If there is no change, the time slider is moved forward and the prior probability density function (pdf) is updated. 

This is to enable an ongoing assessment of the satellite state.  

4.1 Z-test for Dependent Data 

The Z-test for dependent data is a Central Limit Theorem type of statistical method that can be used when the 

observations are not independent. Thus, this is a general method that can be used for any set of observations. 

The test statistic can be approximated by a normal distribution under the null hypothesis. Each test statistic is 

compared to the baseline by defining a z-score measure. The z-score represents the distance between the sample 

mean after pass k and the baseline mean in terms of the number of standard deviations away from the sample 

mean. The sample mean, after pass k, may be either less or more than the baseline mean in order for the 

absolute value of the z-score to remain below a user-defined threshold [1].  

4.2 Classical Sequential Analysis 

Classical sequential analysis is a statistical method that evaluates data as it is obtained, as it re-computes the test 

statistics each time a new data point is obtained. By using this method to assess the input data, the test does not 

require a predetermined sample size before beginning. This characteristic is unique to sequential analysis and 

allows the user to execute a decision earlier and with fewer observations as compared to the Z-test for 

dependent data. The process consists of computing a likelihood function and defining a set of bounds based on 

𝛼 and 𝛽 to use in evaluating the likelihood output [2]. 
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4.3 Brownian Motion Drift Analysis 

Brownian motion is a continuous limit of a random walk process. The sequential analysis method can be 

applied to Brownian motion to test whether or not the drift of the Brownian motion process is zero. This method 

is useful because it evaluates data as it is collected and allows the user to make a decision once a fixed bound 

has been reached. The Brownian motion approach, however, has a specific set of requirements that must be 

verified before being used for testing [3].  

 

5.0 Hypothesis Testing Assumptions  

 

5.1 Z-test for Dependent Data 

 
In order to receive accurate results using the Z-test for dependent data, there are certain conditions that must be true 

about the data set that will be evaluated: 

 

• Large sample size n for the baseline data. 

• The data points are assumed to be sampled from the same population distribution.  

 

5.2 Classical Sequential Analysis 

 
In order to receive accurate results using classical sequential analysis, there are certain conditions that must be true 

about the data set that will be evaluated: 

 
• 𝑟𝑘 is independent of 𝑟𝑘−1 in the baseline data.  

• This method does not require the data set to have a standard normal distribution.  

 

5.3 Brownian Motion Drift Analysis 

 
In order to apply methods applicable to Brownian motion to 𝑟𝑘, there are certain conditions that must be true about 

the data set that will be evaluated: 

 

 ∆𝑟𝑘 is independent of  ∆𝑟𝑘−1 in the baseline data.  

 Standard Normal density (pdf) of  ∆𝑟 values 

 rk(0) = 0 

 rk(t), 0 ≤ t < ∞ is a continuous function of t (or time). Note that each observation k is associated with its 

monotonically increasing value of time at which the observation was taken.  

 

6.0 Hypothesis Testing Procedures 

 

6.1 Z-test for Dependent Data 
 

While describing the Z-test for dependent data, the following description considers the rk values, although the 

procedure is the same when using the value of P(NOM| rk).  

 

 In order to perform the Z-test for dependent data, the null hypothesis and alternate hypothesis are defined as 

follows. The null hypothesis defines a state when no change has occurred. The alternative hypothesis defines a 

state where change has occurred in the mean of 𝑟𝑘 values. The estimated value of the population mean 𝐸(𝑟𝑘) is 

denoted as 𝜇𝑘, which is the sample mean. The hypothesis test is defined in order to assess if  𝜇𝑘≥0 differs from 

the baseline mean, 𝜇𝑘<0: 

 

Null hypothesis = 𝐻𝑜  :  𝜇𝑘≥0 =  𝜇𝑘<0 
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Alternative hypothesis = 𝐻𝑎  :  𝜇𝑘≥0 ≠  𝜇𝑘<0 

 

 The Z-test for dependent data does require us to pick a significance level α. We will use α = .05. However, the 

Z-test for dependent data does not allow us to specify β. Therefore, we will not know our type II error for these 

calculations and cannot accept our null hypothesis at any point for this method with a handle of the probability 

of doing so in error. 

 

 The Z-test for dependent data algorithm starts with the given baseline data containing 𝑛 observations, shown as 

the green segment in Fig. 6. These data points are considered to be before the user-defined reference time, t0. 

The mean is calculated for the values of this data set, which provide the baseline against which the new data is 

compared:  

 

Baseline mean = 𝜇𝑘<0, which is estimated by the sample mean  
1

𝑛
∑ 𝑟𝑘

−1
𝑘=−𝑛   

 

 Since the successive values of rk can be dependent, the population variance 𝜎2 is adjusted using what we will 

call the “dependent variance”. This dependent variance reflects the alpha-mixing parameter, α, which specifies 

how many previous passes on which each value has significant dependence. The dependent variance is 

comprised of the sample variance and a term that involves covariance, which is calculated using the alpha 

mixing procedure [4]. Specifically: 

  

Dependent variance = population variance + 2*(covariance-related term) 

 

The covariance-related term is estimated by: 

 

  ( 𝜎𝑘<0)2 = 𝑆𝑘<0
2 + 2 ∗ 

1

𝑛−𝛼
∑ [∑ [(𝑟𝑖𝑘 − 𝛼

𝑖=1 𝜇𝑘<0)(𝑟𝑖𝑘 − 𝜇𝑘<0)]]−1
𝑘=−𝑛 , 

 

𝑆𝑘<0
2 =  𝑉𝑎𝑟(𝑋𝑘<0) =  

1

𝑛−1
∑ (𝑟𝑘 − 𝜇𝑘<0) 2−1

𝑘=−𝑛 , which estimates the variance of the baseline 𝑟𝑘 values 

 

 The alpha mixing calculations commence when a sufficient amount of new data is received. The number of 

passes that constitute sufficient new data may be a fraction of the data size in the baseline (e.g. when new data 

is collected that spans a full night). When new data is received for passes 0 to k (shown in yellow color in Fig. 

6), the data that spans from pass (k-n) to pass (k) is utilized to perform the assessment. The data from passes (k-

n) to 0 is from the baseline. This corresponds to the use of a sliding window of the last 𝑛 observations for the 

alpha mixing analysis.  

 

 For each new pass k, the value of rk is computed first and then used for the Z-test for dependent data 

calculation. The mean is estimated for the rk for the set of values from passes (n-k) to k: 

 

Current sample mean after pass k = estimate of 𝜇𝑘≥0 = 𝑟̅𝑘 =  
1

𝑛
∑ 𝑟𝑘

𝑘
𝑖=𝑘−𝑛+1  

 

 The estimate of the current mean after pass k, 𝑟̅𝑘, is compared with the baseline by defining a z-score measure 

(or standard score measure), which is denoted as 𝜂𝑘 [4]:  

 

Z-score 𝜂𝑘 =
𝑟̅𝑘− 𝜇𝑘<0 
𝜎𝑘<0

√𝑛
⁄

 

 

The z-score represents the distance between the sample mean after pass k and the baseline mean in terms of the 

number of standard deviations. The sample mean after pass k may be less or more than the baseline mean in 

order for the absolute value of the z-score to remain below a user-defined threshold.  

 

 Each new observation for which we do not reject the null hypothesis, we continue to assume that the satellite is 

NOM (i.e., unchanged from the baseline) and continue to evaluate new observations. When there is an 

observation that does not satisfy the null hypothesis, it implies that the mean has changed in a statistically 
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significant amount as compared to the baseline, which prompts us to reject the null hypothesis and accept the 

alternative. Therefore, we can conclude the satellite is different from its state in the baseline data (i.e. the 

occurrence of change) and the time slider cannot be forwarded up to the current pass k. Once we have obtained 

n new observations for which we do not reject the null hypothesis, the time slider can be moved forward to the 

current pass k. 

 

 
Fig. 10. Z-test for Dependent Data Flow Chart 

 

6.2 Classical Sequential Analysis  
 

The classical sequential analysis method will proceed by using the 𝑟k values; however, other values may also be used 

as long as they are independent. The classical sequential analysis does not require the data set to have a standard 

normal distribution.  

 As described in Section 6.1, this method also requires the creation of a set of baseline r values. Once the 

baseline has been defined, the baseline mean and standard deviation must be computed for future 

calculations.  

 

 The classical sequential analysis method does require a predetermined α and β. The test also requires a 

predefined δ that is fixed to be greater than zero, where delta is the number of standard deviations the 

sample mean is away from the null hypothesis mean 0. For our examples, α = 0.05, β = 0.05, and δ = 1.0. 

Because this test allows us to determine α and β, we can quantify the P(type I error), P(type II error) and be 

able to accept the null hypothesis when necessary.  

 

 To be able to properly use the classical sequential analysis test, a null hypothesis and alternative hypothesis 

must also be defined. The null hypothesis describes a state where no change has occurred. The alternative 

hypothesis describes a state where a change has occurred that is larger than the predefined δ. Both 

hypotheses are defined below.  

Null hypothesis = Ho: µ = µ0 

 

 Alternative hypothesis = Ha: |
𝜇−𝜇0

𝜎
| > 𝛿 

 

 Before the method can be evaluated, a user-defined bound must be established. The lower bound is denoted 

as B and is defined by 

B = 
𝛽

1−𝛼
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The upper bound is denoted as A and is defined by  

A = 
1−𝛽

𝛼
 

 Once a new set of data is received, the classical sequential analysis method uses a likelihood function to 

evaluate the data set at each observation k. The likelihood function has a closed form expression if 𝑟k is 

normally distributed; it has to be numerically computed otherwise. In this work, the likelihood function is 

computed using the following equation, which is valid for normally distributed 𝑟k: 

Ln = 
1

2
∗ 𝑒−

1

2
𝑘𝛿2

(𝑒
𝛿

𝜎
∑(𝑟𝑘−𝜇)

+ 𝑒−
𝛿

𝜎
∑(𝑟𝑘−𝜇)

) 

 

 After the likelihood function is computed, the output is evaluated according to the prefixed bounds. If the 

likelihood function ∈ (B, A) then the process continues sampling. If the likelihood function is less than or 

equal to B, then the null hypothesis is accepted and thus, we conclude that no change has occurred. If the 

likelihood function is greater than or equal to A, then the alternative hypothesis is accepted, and thus, we 

conclude that a change has occurred.  

 

 

Fig. 11. Classical Sequential Analysis Flow Chart 

 

6.3 Brownian Motion Drift Analysis 

 
As described early, Brownian motion is a specific sequential analysis method, so its process is very similar to that of 

the classical sequential analysis method. For our examples, the main difference between Brownian motion and the 

classical sequential analysis is that the Brownian motion baseline is executed using the ∆𝑟𝑘values. The creation of 

the baseline is identical to that described in Section 6.1.  

 

 Once the 𝑟𝑘 baseline has been created, the ∆𝑟𝑘values are computed using the equation listed below.  

 

∆𝑟𝑘 = 𝑟𝑘 − 𝑟𝑘−1 

 

After the ∆𝑟𝑘 baseline is generated, the mean and standard deviation of the baseline is calculated for a later 

use. 
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 Brownian motion does require α, β and δ to be set prior to testing. For this method, delta is defined as the 

number of standard deviations that mean drift µis away from null hypothesis mean drift 0. The Brownian 

motion examples have α = 0.05, β = 0.05 and δ = 1.0. 

 

 A null hypothesis and alternative hypothesis must also be defined in order to proceed with Brownian 

motion. The null hypothesis describes a state where no change has occurred. The alternative hypothesis 

describes a state where a change has occurred. Both hypotheses are defined below. 

 

Null hypothesis = Ho: µ = 0 

 

Alternative hypothesis = Ha: |𝜇| > 𝛿 ∗ 𝜎 

 

 Before the method can be evaluated, a user-defined bound must be established. The lower bound is denoted 

as A and is defined by 

A = 
𝛽

1−𝛼
 

The upper bound is denoted as B and is defined by  

B = 
1−𝛽

𝛼
 

 Once a new set of data is received, the Brownian motion drift method standardizes each 𝑟𝑘 by subtracting 

each 𝑟𝑘 by the value at observation 0 and then dividing by the standard deviation of the baseline. This 

adjusted r value is denoted below. 

𝑟̃𝑘 =
𝑟𝑘 − 𝑟0

𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

 

 This method also uses a likelihood function to evaluate the data set at each observation k. This likelihood 

function is computed using the following equation for two-sided drift analysis as explained in Section 

6.3.1: 

Ln = 0.5 ∗ 𝑒−
𝑘𝛿2

2 ∗ (𝑒(𝛿∗𝑟̃) + 𝑒−(𝛿∗𝑟̃)) 

 After the likelihood function is computed, the output is evaluated according to the prefixed bounds. If the 

likelihood function ∈ (A, B) then the process continues sampling. If the likelihood function is less than or 

equal to A, then the null hypothesis is accepted and thus, we conclude that no change has occurred. If the 

likelihood function is greater than or equal to B, then the alternative hypothesis is accepted, and thus, we 

conclude that a change has occurred. 
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Fig. 12. Brownian Motion Drift Analysis Flow Chart 

 Two-sided Drift Analysis  

Reference 3 presents a hypothesis test to detect change in drift for Brownian motion. If μo denotes the drift 

corresponding to the null hypothesis and μ1 denotes the drift corresponding to the alternative hypothesis, then the 

likelihood ratio function 

𝐿(𝑡, 𝑊(𝑡); 𝜇0, 𝜇1) =  𝑒[(𝜇1−𝜇0)∗𝑊(𝑡)−(
𝑡
2

)∗(𝜇1
2−𝜇0

2)]
 

 

is used to test Ho: μ= μo vs. Ha: μ= μ1 for values μo < μ1 [3]. Our process 𝑟𝑘 is transformed to the correct scale to be a 

Brownian motion, and this likelihood ratio 𝐿(𝑡, 𝑊(𝑡); 𝜇0, 𝜇1) can be approximated discretely by  

 

𝐿𝑘(𝜇0, 𝜇1) =  𝑒[(𝜇1−𝜇0)∗ 𝑟𝑘−
𝑘
2

∗(𝜇1
2− 𝜇0

2)]
 

 

In our case, μo= 0, referring to the null hypothesis case of “no drift”, which we are equating to the NOM state.  

However, we are interested in a test for Ho: μ = 0 vs. Ha: |μ| ≥μ1 for some value μ1> 0.   

Note that our process r was normalized to be a Brownian motion (with scale σ =1), and we are testing the alternative 

hypothesis | μ |> δ. 

 

Following the idea presented in [2] to extend a likelihood ratio test for a 1-sided alternative to a test for a 2-sided 

alternative, we compute a new likelihood ratio function as follows. The numerator is the sum of the likelihood 

functions (i.e. joint densities) associated with μ = δ and μ = -δ, each multiplied by probability 0.5. The denominator 

is the likelihood function associated with μ = 0.  Dividing the denominator into both numerators results in the 

expression being the sum of two likelihood ratio functions corresponding to the alternative hypotheses μ= δ and μ =-

δ,  respectively.  

 

That is, 𝐿𝑘(𝜇0, 𝜇1) for our 2-sided case with μo=0 and μ1 =+/- δ becomes   

 

𝐿́𝑘(𝜇0, 𝜇1) =  .5 ∗  𝐿𝑘(0, 𝛿) +  .5 ∗  𝐿𝑘(0, −𝛿) 

                             

                                                                                     =  .5 ∗  𝑒[(−𝛿)∗ 𝑟𝑘− 
𝑘

2
∗ 𝛿2] + .5 ∗  𝑒[(𝛿)∗ 𝑟𝑘− 

𝑘

2
∗ 𝛿2]

 

                             =  .5 ∗  𝑒[− 
𝑘
2

∗ 𝛿2] ∗ (𝑒[−𝛿∗𝑟𝑘] +  𝑒[𝛿∗𝑟𝑘]) 

   

,which is the formula mentioned above. 



15 

AMOS Technical Conference 2015 

6.4 A Note on the Use of the Brightness Ratio during Hypothesis Testing 

The Brightness Ratio is defined in Section 2.0. Note 𝑟𝑘 is not symmetric. For example, if  𝐼𝑂𝑘 = 5 ∗  𝐼𝑀𝑘 then  𝑟𝑘 =

4 but if  𝐼𝑀𝑘 = 5 ∗ 𝐼𝑂𝑘, then  𝑟𝑘 = −
4

5
=  −0.8. The range of values we consider to be acceptable for 𝑟𝑘 is (-0.6, 

1.5). Although the r values are asymmetric, this characteristic is only of concern during the classical sequential 

analysis test. This is the case because the Z-test for dependent data has a test statistic that is normal due to the 

Central Limit Theorem for Dependent Data, irrespective of distribution. Similarly, the Brownian motion drift 

analysis is computed only on the delta r values, which can be independent and normally distributed regardless of 

the probability distribution of the r values. Thus, the classical sequential analysis method applied to r is the only 

method that may be affected by the asymmetry. However, classical sequential analysis does not require the data set 

to be sampled from a normal distribution. For future work in this case, the likelihood function used in the classical 

sequential analysis will be derived from the population distribution via an empirical probability density function. 
 

7.0 Cross-tag Resolution Method 

 

7.1 Overview 
 

Once the results from the three methods have been obtained, we can begin analysis. If all three methods determine a 

satellite is ANOM, then we can conclude the satellite has changed in some way. One way the satellite can change is 

due to a cross-tag with one of its peer satellites. This means the satellite has been miss identified as another satellite 

in its cluster. This method helps to resolve those situations. 

 

7.2 Methods 
 

Suppose the three methods have determined at least one of the satellites is ANOM. Then, we must try to determine 

the change in that satellite. If two satellites are determined to be ANOM by all three tests or one satellite is 

determined to be ANOM and the other satellite’s state cannot be determined, then we can use the cross-tag 

resolution method to determine if the cause of ANOM is due to a cross-tag. When two satellites are determined to be 

ANOM by at least one test, we can take the new data from the two satellites and swap them. Thus, the baseline of 

the first satellite is now paired with the new data of the second satellite, while the baseline of the second satellite is 

paired with the new data of the first satellite. The three methods can be run again on these new pairs of data to see if 

this swap resolved the cross-tag.  

 

7.3 Assumptions 
 

The present work assumes if a cross-tag does occur the cross-tag occurred during the daytime gap. Fig. 2 - Fig. 4 

illustrate the reason for this assumption. The baseline data for each satellite concludes at the end of a night’s 

observations, and the new day begins at the start of the next night. Therefore, when the three methods are performed, 

a result is obtained and applied to all the new data since the beginning of that night. Thus, we conclude something 

changed during the daytime gap. 

 

7.4 Procedures 

 
After the composite hypothesis test has determined at least one satellite to be ANOM, we must try to determine the 

changes in the satellite. If there is a second satellite which is determined to be ANOM, or no conclusion could be 

reached, then we can use the two not NOM satellites in this cross-tag resolution method. The procedure’s steps are 

listed in order below.  

 

1. Swap the new observations for the two satellites, S1 and S2. Thus, the baseline of satellite S1 is now paired 

with the new data of satellite S2, while the baseline of S2 is paired with the new data of S1. 

2. Compute the prior distribution for the values being used: 𝑟𝑘, ∆𝑟𝑘, or P(NOM | rk).  

3. Perform the three methods again as described in Sections 6.1 and 6.2. 
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4. Analyze the new results. If all three tests now conclude NOM for either satellite, say S1, then there was a 

cross-tag present. If one of the satellites is still ANOM, say S2, and there was a third satellite, S3, in the 

cluster that was not NOM, then we can perform another swap. We can swap the new data of S2 after the 

first swap with the new data of S3 by completing steps 1 - 4 again. However, if the results still conclude not 

NOM for both satellites, then we cannot determine if there was a cross-tag and it is likely that the cause  

could be from a different cross-tag scenario or that a different change had occurred in the satellite. 

 

Once all the possible cross-tag situations have been tested for all satellites in the cluster that were determined to not 

be NOM by the composite hypothesis test, we have a better understanding of which satellites were cross-tagged and 

have resolved the cross-tag so we are associating the data to the right object. 

7.5 Confidence Assessment  

To be able to utilize the cross-tag resolution method described above, the composite hypothesis test used to 

determine whether or not we believe that a particular satellite has changed from what is believed to be its NOM state 

must be assigned a level of confidence.  Suppose that each hypothesis test is performed at significance level α and 

that the null hypothesis Ho reflects that the satellite is NOM.  Significance level α means that there is only α 

probability that the test will incorrectly conclude that the satellite is ANOM, when in reality it is NOM; i.e. α = P 

(test rejects Ho | Ho is true). 

Recall that if at least one of the tests concludes that the satellite is ANOM, we will not conclude that the satellite is 

NOM. It is of interest to know the probability of type I error of this sort of conclusion. To this end, we compute the 

probability that we will not conclude that the satellite is NOM, when in reality the satellite is NOM as follows:   

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 3 𝑡𝑒𝑠𝑡𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑙𝑢𝑑𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑠 𝐴𝑁𝑂𝑀 | 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑠 𝑁𝑂𝑀)   

= 𝑃( 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 3 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑡𝑒𝑠𝑡𝑠 |𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

= 𝑃 ( ⋃ {𝑡𝑒𝑠𝑡 𝑖 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝐻0}
𝑖

| 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒)  ≤  ∑ 𝑃(𝑡𝑒𝑠𝑡 𝑖 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝐻0 
𝑖

| 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

=  ∑ ( 𝛼)
𝑖

 

= 3 𝛼 

This means that the composite test for whether or not the satellite is NOM  using the group of 3 tests performed 

individually at level α has an overall significance level of less than or equal to  3α. 

For the current case, we perform the 3 tests on a single satellite at level 0.05.  Moreover, suppose that at least 1 of 

the 3 tests results in a rejection of the null hypothesis that the satellite is NOM.  If we use this criterion of “at least 

one rejection” necessary to conclude that the satellite is not NOM, then our method has reached the conclusion: “we 

cannot conclude that the satellite is NOM”. Using the above calculation, we recognize that our method has less than 

or equal to 0.15 probability of failing to conclude that the satellite is not NOM, when in reality it is NOM. 

Additionally, we are interested in knowing the probability that the composite test method correctly concludes that 

the satellite is NOM, which would be the case if all three tests conclude to not reject the null hypothesis of NOM. In 

other words, what is the P(all 3 tests correctly result in non-rejection of null hypothesis that satellite is NOM | 

satellite is NOM)? To compute this number, we use the complement rule and the above computation as follows: 

𝑃( 𝑎𝑙𝑙 3 𝑡𝑒𝑠𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑛𝑜𝑛 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑠 𝑁𝑂𝑀 | 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑠 𝑁𝑂𝑀) 

= 1 − 𝑃(𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 3 𝑡𝑒𝑠𝑡𝑠 𝑜𝑓 𝐻0 |𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 



17 

AMOS Technical Conference 2015 

= 1 − 𝑃 ( ⋃ {𝑡𝑒𝑠𝑡 𝑖 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝐻0}
𝑖

| 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒)  ≥  ∑ 𝑃(𝑡𝑒𝑠𝑡 𝑖 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝐻0 
𝑖

| 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒)  

= 1 − 3𝛼 

In other words, we perform the 3 tests on a single satellite at level 0.05.  Moreover, suppose that none of the 3 tests 

results in a rejection of the null hypothesis that the satellite is NOM.  Using our composite testing methods, we are 

led to conclude that the satellite is NOM. By the above computation, we recognize that our method has at least a 

0.85 probability of correctly concluding that satellite is NOM. 

8.0 Examples 
To illustrate the three methods described in Section 4.0, we will consider the three satellite cluster shown previously 

in Fig. 5. The three satellites denoted as S1, S2, and S3, and their signatures are displayed in Fig. 13 - Fig. 15. This is 

the same data as in Fig. 2 - Fig. 4. The observations were simulated as taken from a space-based sensor. The 

observations for S1 span 7 days, while the observations for S2 and S3 only span 5 days. The number of days of 

observation can be visualized by counting the daytime gaps in Fig. 2 - Fig. 4. 

 

Each data set was divided into two parts. The first portion was used to simulate a set of baseline data. A baseline is 

data which has been reviewed by a human or passed a collection of statistical tests in order to verify which satellite 

the observations belong to and that the satellite’s state is nominal (i.e., NOM). The second portion of data represents 

the new incoming observations for that satellite. The baseline is used to determine what results we can expect for a 

particular satellite, and these expectations can be used to verify the current state of the satellite from the new 

observations. Fig. 13 - Fig. 15 display the three data sets used for the examples. The blue points in each graph 

represent the observations used as the baseline for that satellite, while the red points represent the new observations 

which are being tested with each of the three methods. 

 

 
Fig. 13. Satellite S1 Signature Plot 
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Fig. 14. Satellite S2 Signature Plot 

 
Fig. 15. Satellite S3 Signature Plot 

 

Once the baseline and the new data sets were created for each satellite, the baseline values were further reduced by 

randomly selecting points from the data. Since there is no guarantee how much data will be provided, we want to 

use these tests on the minimum amount of data, so we generate sparse baseline data sets of 31 or 32 points. This 

way, even when using the differences in the rk values, we will still have 30 points and the Central Limit Theorem for 

Dependent Data will be valid for the Z-test method. To generate the sparse data, we sorted by orbit angle. We took 

the total number of points divided by 30 to determine how often to select an observation. Then, we randomly 

selected a point that frequently to get 31 or 32 observations. The resulting signature graphs for the three satellites are 

shown in Fig. 16 - Fig. 18. This reduced data was utilized in order to perform the change detection and data 

association.  
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Fig. 16. Satellite S1 Sparse Signature Plot 

 

 
Fig. 17. Satellite S2 Sparse Signature Plot 
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Fig. 18. Satellite S3 Sparse Signature Plot 

 

From the three data sets, we can construct 6 more data sets. From these 9 data sets, we can create 6 different 

potential cross-tag situations which are displayed in Table 1. The analysis of these six cases and their resolutions are 

presented in section 8.0. Each example describes how a cross-tag anomaly is resolved to allow for correct data 

association. Section 9.0 describes an efficient way to collect data using maximum information entropy.  

 

Table 1. Possible Cross-tag Situations 

Example Satellite S1: Satellite S2: Satellite S3: 

1 NOM NOM NOM 

2 Cross-tagged as S2 Cross-tagged as S1 NOM 

3 Cross-tagged as S3 NOM Cross-tagged as S1 

4 NOM Cross-tagged as S3 Cross-tagged as S2 

5 Cross-tagged as S2 Cross-tagged as S3 Cross-tagged as S1 

6 Cross-tagged as S3 Cross-tagged as S1 Cross-tagged as S2 

 

8.1 Method Parameters 

 

 Z-test for Dependent Data 
 

The Z-test used here is based on a Central Limit Theorem for dependent data.  There are no population assumptions 

necessary, but if the sample size is sufficiently large, the sample mean values have an approximately normal 

distribution from the Central Limit Theorem. Therefore, as long as we have at least 30 values, it is reasonable to 

apply the Central Limit Theorem for dependent data. For the examples, we will use the Z-test for dependent data on 

both the r values and the P(NOM|rk) values. 

 

 Classical Sequential Analysis 
 

The classical sequential analysis method has one main assumption, and it is that the observed sequence values are 

independent. To determine if the rk values or the Δrk values are independent or not, we use the sample correlation. 

We also create a histogram of the values to evaluate if it is approximately normal. If the random variables appear to 

be uncorrelated with an approximately normal distribution, then we will assume independence and can use those 

values for the classical sequential analysis method. The sparse baseline r values are shown in Fig. 19 - Fig. 21. 
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Fig. 19. Satellite S1 Sparse r Baseline 

 

 
Fig. 20. Satellite S2 Sparse r Baseline 

 

 
Fig. 21. Satellite S3 Sparse r Baseline 

 

To determine if the rk and rk+1 values are correlated, we first calculated the correlation coefficient for each satellite 

for the sparse baseline values. Then, we used a t-test with α = 0.05 on the null hypothesis that the correlation 

coefficient is equal to zero. The results for the r values are in Table 2, while the results for the Δr values are in Table 
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3. If the correlation coefficient is within the non-rejection region of the t-test determined by α = 0.05, then we cannot 

reject the null hypothesis that the correlation coefficient is zero and therefore, that the values are uncorrelated. 

 

Table 2. r Value Correlation Results 

Satellite Correlation 

Coefficient 

Test statistic 

value  

Non-rejection 

Region  

Conclusion 

S1 -0.3521 -2.0259 (-2.045, 2.045) uncorrelated 

S2 0.0007 0.0035 (-2.048, 2.048) uncorrelated 

S3 0.3005 1.6969 (-2.045, 2.045) uncorrelated 

 

Table 3. Δr Value Correlation Results 

Satellite Correlation 

Coefficient 

Test statistic 

value 

Non-rejection 

Region 

Conclusion 

S1 -0.7021 -5.2176 (-2.048, 2.048) correlated 

S2 -0.6946 -5.0169 (-2.052, 2.052) correlated 

S3 -0.1704 -0.9313 (-2.048, 2.048) uncorrelated 

 

Looking at Table 2, we see that by the t-test the baseline r values for all three satellites are uncorrelated. However, 

Table 3 shows us that the Δr values are only uncorrelated for S3. Thus, we can use the classical sequential analysis 

on all three satellites for their r values, but we can only use it on the Δr values for S3. 

 

The data being uncorrelated is a necessary condition for the data to be independent, but to assure the data is 

independent, we must also satisfy a sufficient condition, such as the data is normally distributed. To determine if the 

sparse baseline r values are approximately normal, we plotted the histogram of the r values from Fig. 19 - Fig. 21. 

Fig. 22 shows the histogram of the baseline values for S1, and the histogram supports normality. Fig. 23 displays the 

r value histogram for S2, and it also supports normality. Fig. 24 illustrates the r value histogram for S3. It does not 

appear normal. We will proceed with the assumptions that S1 and S2 are normal distributed.  

 

 
Fig. 22. Histogram of S1 Baseline r Values 
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Fig. 23. Histogram of S2 Baseline r Values 

 

 
Fig. 24. Histogram of S3 Baseline r Values 

 

The full baseline for the Δr values is displayed in Fig. 25, and their histogram is shown in Fig. 26 to better 

demonstrate that the Δr values for S3 are approximately normal. Therefore, we can assume the Δr values for S3 are 

independent and use them for the classical sequential analysis method. 
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Fig. 25. Satellite S3 Full Δr Baseline 

 

 
Fig. 26.  Histogram of S3 Full Baseline Δr Values 

 

 Brownian Motion Drift Analysis 
 

The Brownian motion drift method requires the most assumptions. It requires the difference in values (between 

consecutive observation points) to be independent and normally distributed. Thus, if we are to use the r values for 

Brownian motion, then the Δr values must be independent and normally distributed. Unfortunately, for these 

examples the Δr values for S1 and S2 are not independent, since they are correlated, as demonstrated in Table 3. 

Therefore, we cannot use the Brownian motion method for S1 and S2. The Δr values for S3 are independent and 

normally distributed as described in Section 8.1.2, so we can use the Brownian motion drift analysis for S3.  

 

8.2 Example 1 
 

The examples consider that a regular but sparse collection of data is ongoing. Example 1 is the situation where all 

three satellites are still NOM. Therefore, there are no cross-tags present as seen in Fig. 27. The results are shown 

when 30 (i.e. k = 30) new observation data points have been collected. Note that the use of k = 30 is only meant for 

illustration. The same calculations are valid for any value of 𝑘 ≥ 0. 
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Fig. 27. Example 1 Input Data 

 

 Z-test on r Values 

 
Fig. 28 - Fig. 30 demonstrate the results of the Z-test for dependent data on r values for Example 1. Since the state of 

all three satellites remains NOM, we expect the Z-test for dependent data to determine that we should accept the null 

hypothesis, Ho. By looking at the three figures, we see that this is indeed the case for Satellite 1 and Satellite 2. 

However, Satellite 3 rejects the null hypothesis and concludes the satellite occurred a change at k=9 (or, for the 

cases when k < 9, this test would have determined Satellite 3 to be NOM). This conclusion can be further explained 

by referring to Fig. 15. In this plot, the new data’s peaks align with the baseline’s valleys, so the method is unable to 

detect NOM up to k = 30.   

 

 

 
Fig. 28. Example 1 S1-1 Z-test on r values Results 
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Fig. 29. Example 1 S2-2 Z-test on r values Results 

 

 
Fig. 30. Example 1 S3-3 Z-test on r values Results 

 

 Classical Sequential Analysis 
 

Fig. 31 - Fig. 33 demonstrate the results of the classical sequential analysis method for Example 1. Since the state of 

all three satellites remains NOM, we expect the classical sequential analysis to determine we should accept the null 

hypothesis, Ho. By looking at the three figures, we see that this is the case for all the satellites. Thus, the classical 

sequential analysis provides us with the correct results for Example 1. 
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Fig. 31. Example 1 S1-1 Classical Sequential Analysis Results 

 

 

 
Fig. 32. Example 1 S2-2 Classical Sequential Analysis Results 

 

 
Fig. 33. Example 1 S3-3 Classical Sequential Analysis Results 
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 Brownian Motion Drift Analysis 
 

Fig. 34 shows the results of the Brownian motion drift analysis for Example 1 for S3. Since all three satellites remain 

NOM, we expect the Brownian motion test to conclude that we should accept Ho and match the classical sequential 

analysis results. From Fig. 34, we see this is the case, and the Brownian motion test provides us with consistent 

results for Example 1. 

 

 

 
Fig. 34. Example 1 S3-3 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 

 
Fig. 35 - Fig. 37 demonstrate the results of the Z-test for dependent data method performed on the P(NOM|r) values 

for Example 1. Since the state of all three satellites remains NOM, we expect the Z-test for dependent data to 

determine that we should accept the null hypothesis, Ho. By looking at the three figures, we see that this is the case 

for all the satellites. Thus, the Z-test for dependent data on the P(NOM|r) values provides us with the correct results 

for Example 1. 

 

 
Fig. 35. Example 1 S1-1 Z-test on P(NOM|r) Results 
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Fig. 36. Example 1 S2-2 Z-test on P(NOM|r) Results 

 

 
Fig. 37. Example 1 S3-3 Z-test on P(NOM|r) Results 

 

 Data Association  
 

Table 4 shows the results for the three tests we are able to perform on all three satellites. For S1, all three tests 

conclude it is still NOM, so we will accept that S1 is NOM. All three tests also conclude S2 is still NOM, so we will 

accept that it is also NOM. For S3, the Z-test for dependent data on r values concluded it was ANOM. Since both of 

the other two satellites are NOM, we know that S3 is not cross-tagged with another satellite in its cluster, but we do 

not know whether the satellite is truly NOM or if something else has happened, such as a panel offset change, to 

cause the satellite to now be ANOM. This is addressed in Section 7. 

 

Table 4. Example 1 Results Chart 

Satellite r Value Z-test Classical Sequential 

Analysis 

P(NOM|r) Z-test 

S1 NOM NOM NOM 

S2 NOM NOM NOM 

S3 ANOM NOM NOM 
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8.3 Example 2 
 

Example 2 is where the baseline data for S1 is paired with the new data from S2 (orange box), which we will denote 

as S1-2 and is shown in Fig. 39.The baseline data for S2 is paired with the new data from S1 (yellow box), denoted as 

S2-1 as shown in Fig. 40. This creates a cross-tag between S1 and S2. Fig. 38 depicts the new input data for Example 

2. Fig. 39 and Fig. 40 show how the signature of the baseline satellite matches the signature of the satellite of the 

new observations. For S1-2 and S2-1, the signatures do not have significant overlap, so we expect all four methods to 

produce accurate results because the r and P( NOM | r ) values should be distinct. Lastly, the baseline of S3 is paired 

correctly with the new data from S3 (magenta box), so S3 is still NOM.  

 

 
Fig. 38. Example 2 Input Data 

 

 
Fig. 39. S1-2 Signatures 
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Fig. 40. S2-1 Signatures 

 

 Z-test on r values 

 
The Z-test for dependent data results using the r values for Example 2 are shown in Fig. 41 - Fig. 43. Since there is a 

cross-tag between S1 and S2, we expect to accept Ha for S1 and S2 and accept Ho for S3.The Z-test does correctly 

conclude Ha for S1 and S2; however, as in Example 1, S3 is cross-tagged with itself, so the reason we  accept Ha is 

stated in Section 8.2.1. 

 

 
Fig. 41. Example 2 S1-2 Z-test on r values Results 
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Fig. 42. Example 2 S2-1 Z-test on r values Results 

 

 
Fig. 43. Example 2 S3-3 Z-test on r values Results 

 Classical Sequential Analysis 
 

The classical sequential analysis results for Example 2 are shown in Fig. 44 - Fig. 46. Since there is a cross-tag 

between S1 and S2, we expect to accept Ha for S1 and S2 and accept Ho for S3. By looking at the three figures, we see 

that this is the case. Thus, the classical sequential analysis provides us with the correct results for Example 2. 
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Fig. 44. Example 2 S1-2 Classical Sequential Analysis Results 

 

 
Fig. 45. Example 2 S2-1 Classical Sequential Analysis Results 

 

 
Fig. 46. Example 2 S3-3 Classical Sequential Analysis Results 
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 Brownian Motion Drift Analysis 
 

The Brownian motion drift analysis result for Example 2 is shown in Fig. 47. S3 is paired with itself, so we expect to 

accept Ho. Fig. 47 indicates this is the case, so Brownian motion provides the correct result for S3 by concluding that 

the drift is zero. 

 

 

 
Fig. 47. Example 2 S3-3 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 

 
The Z-test for dependent data results for Example 2 are shown in Fig. 48 - Fig. 50. Since there is a cross-tag between 

S1 and S2, we expect to accept Ha for S1 and S2 and accept Ho for S3. By examining the three figures below, we see 

that the Z-test for dependent data performed on the P(NOM|r) values accepts Ha for S1 and S2  and accepts Ho for S3. 

Thus, the Z-test for dependent data provides accurate results for Example 2.  

 

 
Fig. 48. Example 2 S1-2 Z-test on P(NOM|r) Results 
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Fig. 49. Example 2 S2-1 Z-test on P(NOM|r) Results 

 

 
Fig. 50. Example 2 S3-3 Z-test on P(NOM|r) Results 

 

 Data Association  
 

Table 5 summarizes the results for the three main tests. For S1 and S2, all three tests conclude ANOM, so we accept 

that they are both ANOM. For S3, two tests conclude NOM and one ANOM, so we cannot conclude whether S3 is 

NOM or ANOM. To try to resolve the change in satellites S1 and S2, we swap their new data, so the new data we 

were using for S1 (orange box) we will use for S2 and the new data we were using for S2 (yellow box) we will use 

for S1. Thus, we result with the same situation as Example 1 as seen below in Fig. 51. Therefore, we can conclude 

that in the original data for Example 2 S1 and S2 were cross-tagged, but after resolving the cross-tag, S1 and S2 are 

NOM and we are unsure about S3, although we know it is not cross-tagged. 

 

Table 5. Example 2 Results Chart 

Satellite r Value Z-test Classical Sequential 

Analysis 

P(NOM|r) Z-test 

S1 ANOM ANOM ANOM 

S2 ANOM ANOM ANOM 

S3 ANOM NOM NOM 
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Fig. 51. Example 2 Cross-tag Resolution 

8.4 Example 3 

 
Example 3 contains a single cross-tag between S1 and S3, so the baseline data for S1 is paired with the new data from 

S3 (magenta box), S1-3 is shown in Fig. 53, and the baseline data for S3 is paired with the new data from S1 (yellow 

box); S3-1 is shown in Fig. 54. S2, in this case, is still NOM. The input data for example 3 is illustrated in Fig. 52. 

Unlike the cross-tag between S1 and S2,where there was little overlap in the satellites’ signatures, Fig. 53 and Fig. 54 

show there is some overlap for the signatures of S1 and S3. Therefore, the methods in this section might have a 

harder time distinguishing between the two satellites.  

 

 
Fig. 52. Example 3 Input Data 
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Fig. 53. S1-3 Signatures 

 

 
Fig. 54. S3-1 Signatures 

 

 Z-test on r values 

 
The Z-test for dependent data on r values results are provided in Fig. 55 - Fig. 57. Because S1 and S3 are cross-

tagged, we anticipate this method to accept Ha for S1 and S3 and accept Ho for S2. Thus, the Z-test for dependent data 

executed on r values provides accurate results for all three cases in Example 3.  
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Fig. 55. Example 3 S1-3 Z-test on r values Results  

 

 
Fig. 56. Example 3 S2-2 Z-test on r values Results 

 

 
Fig. 57. Example 3 S3-1 Z-test on r values Results 

 

 Classical Sequential Analysis 
 

Example 3 contains a cross-tag between S1 and S3, so we expect to accept Ha for S1 and S3 and accept Ho for S2. The 

classical sequential analysis results for this example are shown in Fig. 58 - Fig. 60, and although it took longer to 

determine S2 is NOM, we get the results we expect. 
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Fig. 58. Example 3 S1-3 Classical Sequential Analysis Results 

 

 
Fig. 59. Example 3 S2-2 Classical Sequential Analysis Results 

 

 
Fig. 60. Example 3 S3-1 Classical Sequential Analysis Results 
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 Brownian Motion Drift Analysis 
 

The result of the Brownian drift motion analysis for Example 3 is displayed in Fig. 61. The results for S3 accurately 

conclude to accept Ha and confirm that there is a non-zero drift. 

 

 

 
Fig. 61. Example 3 S3-1 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 

 
The results for the Z-test for dependent data method performed on the P(NOM|r) values are shown in Fig. 62 - Fig. 

64. In this example, S1 and S3 are cross-tagged, so we expect the test to accept Ha for S1 and S3. Conversely, S2 

receives new data from itself, so the test should accept the null hypothesis. Displayed below, the test correctly 

concludes to accept Ha for S1 and accept Ho for S2. The graph for S3, on the other hand, accepts the null hypothesis, 

which does not correspond to what is expected.  

 

 
Fig. 62 Example 3 S1-3 Z-test on P(NOM|r) Results 
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Fig. 63 Example 3 S2-2 Z-test on P(NOM|r) Results 

 

 
Fig. 64 Example 3 S3-1 Z-test on P(NOM|r) Results 

 

 Data Association  
 

Table 6 displays the overall results for Example 3. All three methods determine S1 is ANOM and S2 is NOM, so we 

will accept these conclusions. Only two methods conclude ANOM for S3, so we are unsure of the state of S3. To try 

to resolve why S1 is ANOM we can swap its new data (magenta box) with the new data of S3 (yellow box). Since 

Example 3 was created by swapping the new data of S1 and S3, this swap will correct the cross-tag, and we will have 

Example 1 again as seen in Fig. 65. 

 

Table 6. Example 3 Results Chart 

Satellite r Value Z-test Classical Sequential 

Analysis 

P(NOM|r) Z-test 

S1 ANOM ANOM ANOM 

S2 NOM NOM NOM 

S3 ANOM ANOM NOM 
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Fig. 65. Example 3 Cross-tag Resolution 

 

8.5 Example 4 

 
Example 4 is the last example with a single cross-tag. The cross-tag is between S2 and S3, so the baseline data for S2 

is paired with the new data from S3 (magenta box), S2-3 shown in Fig. 67, and the baseline data for S3 is paired with 

the new data from S2 (orange box), S3-2 shown in Fig. 68. Thus, S1 is NOM. The cross-tag between S2 and S3 has 

considerable overlap for the signatures of S2 and S3 as can be seen in Fig. 67 and Fig. 68. Therefore, the methods 

have a harder time distinguishing between the two satellites, and consequently, they might not be able to detect the 

cross-tag.  

 

 
Fig. 66. Example 4 Input Data 
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Fig. 67. S2-3 Signatures 

 

 
Fig. 68. S3-2 Signatures 

 

 Z-test on r values 
 

The results for the Z-test for dependent data on r values are shown in Fig. 69 - Fig. 71. Because S2 and S3 are cross-

tagged in Example 4, our test is correct in concluding to accept Ha for S2 and S3 and to accept Ho for S1. S2-3 does 

take more than the expected number of observations to reach a decision, but the reasoning for this is that the 

signatures are very similar to one another as seen in Fig. 67. 
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Fig. 69. Example 4 S1-1 Z-test on r values Results 

 

 
Fig. 70. Example 4 S2-3 Z-test on r values Results 
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Fig. 71. Example 4 S3-2 Z-test on r values Results 

 

 Classical Sequential Analysis 
 

For Example 4, we expect to accept Ha for S2 and S3 and to accept Ho for S1, because S2 and S3 are cross-tagged. 

Unfortunately, Fig. 72 - Fig. 74 show that the classical sequential analysis could not find the cross-tag for S2-3 or S3-

2. However, for S3-2, if we update the slider by moving it forward to halfway between the start of the new data and 

the initial conclusion to accept Ho and then restart the method over again, the second run of the classical sequential 

analysis accepts Ha at observation 10. Similarly, if we update the time slider for S2-3, we would eventually obtain the 

conclusion to accept Ha at observation 24, but it takes several updates of the time slider. The classical sequential 

analysis has difficulty, especially for S2-3, because of the orbit angle of the new observations. Observations 0 through 

22 are in the orbit angle range -75 to -45, and Fig. 67 illustrates that the signatures of S2 and S3 at these orbit angles 

are very similar. This causes the r values that we are testing to be similar, so the test is unable to detect a change. 

 

 
Fig. 72. Example 4 S1-1 Classical Sequential Analysis Results 
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Fig. 73. Example 4 S2-3 Classical Sequential Analysis Results 

 

 
Fig. 74. Example 4 S3-2 Classical Sequential Analysis Results 

 

 Brownian Motion Drift Analysis 
 

The result for Example 4 for the Brownian motion drift analysis is better for S3 than the classical sequential analysis 

results. Unlike the classical sequential analysis method, where we had to update the time slider, we can accept Ha for 

S3 the first time we run the test. 
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Fig. 75. Example 4 S3-2 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 

 
In Example 4, S2 and S3 are cross-tagged, so the Z-test for dependent data on P(NOM|r) values results are expected 

to accept Ho for S1 and accept Ha for S2 and S3. The results for this method are shown in Fig. 76 - Fig. 78. The test 

for this example correctly concludes Ho for S1 and Ha for S2 and S3. Although it does take S3 more observations than 

expected to come to a decision, we are attributing this to the similarities in their signatures in Fig. 68. 

 

 
Fig. 76. Example 4 S1-1 Z-test on P(NOM|r) Results 
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Fig. 77. Example 4 S2-3 Z-test on P(NOM|r) Results 

 

 
Fig. 78. Example 4 S3-2 Z-test on P(NOM|r) Results 

 

 Data Association  
 

Table 7 displays the results for Example 4. The only conclusion all three tests agree on is that S1 is NOM. For both 

S2 and S3 the classical sequential analysis method determines NOM, while the other two methods determine ANOM. 

Thus, the only conclusion we can come to is that S1 is NOM. If we want to try to resolve the potential change of S2 

and S3, then we could try and swap their new data and run the tests again. Upon swapping the new data, we actually 

would reverse the cross-tag created for Example 4, and therefore, we would again end up with Example 1. The data 

swap is illustrated in Fig. 79. 

 

Table 7. Example 4 Results Chart 

Satellite r Value Z-test Classical Sequential 

Analysis 

P(NOM|r) Z-test 

S1 NOM NOM NOM 

S2 ANOM NOM ANOM 

S3 ANOM NOM ANOM 
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Fig. 79. Example 4 Cross-tag Resolution 

 

8.6 Example 5 
 

Example 5 contains a multi-satellite cross-tag. The baseline data for S1 is paired with the new data from S2 (orange 

box), denoted as S1-2, the baseline data for S2 is paired with the new data from S3 (magenta box), denoted as S2-3, and 

the baseline data for S3 is paired with the new data from S1 (yellow box), denoted as S3-1. Therefore, there are no 

NOM satellites in this example. 

 

 
Fig. 80. Example 5 Input Data 

 

 Z-test on r values 
 

For the Z-test for dependent data on r values, the results are displayed in Fig. 81 - Fig. 83. This method has three 

different cross-tagged situations, and the test accurately accepts the alternative hypothesis for S1, S2, and S3. 

Therefore, the Z-test for dependent data on r values is correct for all cases in Example 5.  
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Fig. 81. Example 5 S1-2 Z-test on r values Results 

 

 
Fig. 82. Example 5 S2-3 Z-test on r values Results 

 

 
Fig. 83. Example 5 S3-1 Z-test on r values Results 
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 Classical Sequential Analysis 
 

The classical sequential analysis results for Example 5 are shown in Fig. 84 - Fig. 86. Although we expect to accept 

Ha for all three satellites, we only accept Ha for S1 and S3. The classical sequential analysis method is unable to 

determine the cross-tag for S2. The reasons for this are discussed in Section 8.5.2.  

 

 
Fig. 84. Example 5 S1-2 Classical Sequential Analysis Results 

 

 
Fig. 85. Example 5 S2-3 Classical Sequential Analysis Results 

 



52 

AMOS Technical Conference 2015 

 
Fig. 86. Example 5 S3-1 Classical Sequential Analysis Results 

 

 Brownian Motion Drift Analysis 
 

The result for Example 5 for Brownian motion drift analysis is seen in Fig. 87. The Brownian motion drift analysis 

correctly accepts Ha for S3. 

 

 

 
Fig. 87. Example 5 S3-1 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 
 

The results for the Z-test for dependent data on P(NOM|r) values are shown in Fig. 88 - Fig. 90. The test correctly 

identifies ANOM for S1 and S2. However, the Z-test for dependent data accepts Ho for S3, which is not consistent 

with the results the test would expect.  
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Fig. 88. Example 5 S1-2 Z-test on P(NOM|r) Results 

 

 
Fig. 89. Example 5 S2-3 Z-test on P(NOM|r) Results 

 

 
Fig. 90. Example 5 S3-1 Z-test on P(NOM|r) Results 
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 Data Association  
 

Table 8 summarizes the results for Example 5. All tests conclude S1 is ANOM, but they do not all agree for S2 and 

S3. Therefore, we can only conclude S1 is ANOM. To try and resolve that S1 is ANOM, we can swap its new data 

(orange box) with one of the other two satellites. Unfortunately, both of the other satellites have two ANOM results 

and one NOM result, so there is no clue as which one to swap with S1. Let us swap the new data of S1 (orange box) 

with the new data of S2 (magenta box). Since S1 is cross-tagged with S2, upon swapping the data and running the 

tests again, we would now conclude S2 is NOM. Since the new data of S2 was S3, when we swap the data S1 

becomes cross-tagged with S3 instead of S2. S3 is already cross-tagged with S1, so we have Example 3 again. Section 

8.4.5 describes how to resolve Example 3. Once the Example 3 cross-tag is resolved, Fig. 91 demonstrates the case 

of Example 1.  

 

Table 8. Example 5 Results Chart 

Satellite r Value Z-test Classical Sequential 

Analysis 

P(NOM|r) Z-test 

S1 ANOM ANOM ANOM 

S2 ANOM NOM ANOM 

S3 ANOM ANOM NOM 

 

 

 
Fig. 91. Example 5 Cross-tag Resolution 

8.7 Example 6 
 

Example 6 contains a multi-satellite cross-tag. The baseline data for S1 is paired with the new data from S3 (magenta 

box), denoted as S1-3, the baseline data for S2 is paired with the new data from S1 (yellow box), denoted as S2-1, and 

the baseline data for S3 is paired with the new data from S2 (orange box), denoted as S3-2. Thus, there are no NOM 

satellites in this example. Fig. 92 illustrates the new input data for Example 6. 

 



55 

AMOS Technical Conference 2015 

 
Fig. 92. Example 6 Input Data 

 

 Z-test on r values 
 

Example 6 results for the Z-test for dependent data on r values are shown in Fig. 93 - Fig. 95. All three cases are 

expected to accept the alternative hypothesis. As seen below, S1, S2 and S3 conclude to accept Ha. Thus, the Z-test 

for dependent data on r values is accurate for Example 6.  

 

 
Fig. 93. Example 6 S1-3 Z-test on r values Results 

 



56 

AMOS Technical Conference 2015 

 
Fig. 94. Example 6 S2-1 Z-test on r values Results 

 

 
Fig. 95. Example 6 S3-2 Z-test on r values Results 

 

 Classical Sequential Analysis 
 

The classical sequential analysis results for Example 6 are displayed in Fig. 96 - Fig. 98. Although we expect all 

three cases to conclude ANOM, the test for S3 accepts Ho. The reasons for this are described in Section 8.5.2. 
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Fig. 96. Example 6 S1-3 Classical Sequential Analysis Results 

 

 
Fig. 97. Example 6 S2-1 Classical Sequential Analysis Results 

 

 
Fig. 98. Example 6 S3-2 Classical Sequential Analysis Results 

 

 Brownian Motion Drift Analysis 
 

The Brownian motion drift analysis result for Example 6 is shown below in Fig. 99.  Brownian motion correctly 

accepts Ha, so its results for S3 are better than those of the classical sequential analysis. 
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Fig. 99. Example 6 S3-2 Brownian Motion Results 

 

 Z-test on P(NOM|r) Values 
 

In this example, the Z-test for dependent data on P(NOM|r) values accepts the alternative hypothesis for S1, S2 and 

S3. Because all three satellites have been cross-tagged with one another, this method provides accurate results for all 

three cases. The S3-2 cross-tag situation does take significantly longer to detect ANOM compared to the other two 

cases. However, this is a result of the similar signatures graphs in Fig. 68. The results for the Z-test for dependent 

data on P(NOM|r) values are shown in Fig. 100 - Fig. 102.  

 

 
Fig. 100. Example 6 S1-3 Z-test on P(NOM|r) Results 
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Fig. 101. Example 6 S2-1 Z-test on P(NOM|r) Results 

 

 
Fig. 102. Example 6 S3-2 Z-test on P(NOM|r) Results 

 

 Data Association  
 

The overall results for Example 6 are displayed in Table 9. All three tests find S1 and S2 to be ANOM, so we can 

conclude S1 and S2 are ANOM. Unfortunately, the classical sequential analysis method finds S3 to be NOM, while 

the other two methods determine it to be ANOM. Therefore, we cannot make any conclusions about S3. If we want 

to try to determine the cause for change in S1 and S2, then we can swap their new data. Since S2 is cross-tagged with 

S1 (yellow box), its new data is truly the new data from S1. So when we swap their new data and run the tests again, 

S1 becomes NOM. Then the new data of S1 is S3 (magenta box), so after swapping the data, S2 becomes cross-tagged 

with S3. Thus, this becomes equivalent to Example 4. The description of how to resolve Example 4 is in Section 

8.5.5. A depiction of the cross-tag resolution for Example 6 is shown in Fig. 103. 

 

 

 

 

Table 9. Example 6 Results Chart 

Satellite r Value Z-test Classical Sequential P(NOM|r) Z-test 
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Analysis 

S1 ANOM ANOM ANOM 

S2 ANOM ANOM ANOM 

S3 ANOM NOM ANOM 

 

 
Fig. 103. Example 6 Cross-tag Resolution 

 

8.8 Summary of Cross-tag resolution 
 

The six examples illustrate how the New Data for a cluster of three satellites may present itself with different 

combinations of cross-tags between satellites. The cross-tag resolution procedure comprised a successive and 

adaptive application of the Z-test and sequential analysis based on the preceding results of the composite hypothesis 

testing. The resolution of the situations in examples 2 through 4 required a two stage application of the composite 

hypothesis testing, while examples 5 and 6 required three stages. In each case, the cross-tag situations were reduced 

to the data analysis performed in Example 1. Therefore, although our original conclusions for an example might be 

that multiple satellites are ANOM, after resolving the cross-tags, we will conclude that S1 and S2 are NOM, and we 

cannot make a conclusion about S3. Thus, the three methods used in the examples and results tables provided to be 

useful in all cases. The assessment is based on the use of P(type I error) = 0.05 and P(type II error) = 0.05. For the 

composite hypothesis test, the resultant P(type I error) = 3*0.05 or 15%.  

 

Thus, there are several conditions when the results of the three tests do not agree with each other. The assessment of 

NOM or ANOM is performed only when all tests agree. To improve the test results (this is so that all tests agree 

with each other), we would first need to improve the Inversion Model and Prediction Model to obtain more accurate 

r and P(NOM|r) values to provide to the tests. To adjust the two models, we need more observations for each 

satellite, especially S3. We also need new observations in order to detect the occurrence of ANOM on an ongoing 

basis. In the present work, the Inversion Model and Predictive Model use the same physics procedure based on the 

two facet model [1]. Thus, the improvement of the Inversion Model also results in the improvement of the Predictive 

Model. This is described in Section 9.0. 

 

8.9 Update of Baseline Signature 
 

Once a satellite is determined to be NOM by the composite hypothesis test, we can update the baseline for that 

particular satellite. Updating the baseline is essential to be able to account for seasonal changes. After the baseline 

has been updated, testing is restarted to keep a current status of the satellite. Fig. 104 shows a notional example of 

updating the baseline for S1. Since S3 was determined to be ANOM in Example 1, we cannot truly update the 

baseline for the satellites in the cluster. However, this section demonstrates how the baseline could be updated if the 

conditions were satisfied.  

 

The dotted lines in Fig. 104 show the movement of the time slider. Because the classical sequential analysis method 

determined S1 was NOM at observation 7 in Example 1, the time slider is forwarded 7 points. It is up to the user to 
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decide how far forward the time slider is moved. The slider can be moved forward to any point in the region from 

the start of the new data up to where the classical sequential analysis method determines the satellite is NOM. 

 

 
Fig. 104. S1 Update of Baseline Signature 

 
After move the time slider forward 7 observations, we can then use any of the methods described in Section 4.0 to 

begin reevaluating the new data. Fig. 105 shows the results of the classical sequential analysis method ran on S1 

using the updated baseline. The classical sequential analysis again determines S1 is NOM. Thus, we could move the 

time slider forward once again and restart the process. 

 

 

 
Fig. 105. S1 Updated Classical Sequential Analysis Results 

 

9.0 Sensor Tasking for Fine Feature Characterization 
 

For the examples, our decision criterion did not lead the user to a definitive conclusion that S3 was NOM or ANOM. 

This work considers that such a lack of conclusion can be due to two reasons. First, the fidelity of the Predictive 

Model may be too low. This results in the values of Brightness Ratio to exhibit significant scatter. Second, the 
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satellite may have changed, which results in a lower fidelity for the Predictive Model since it is derived from the 

inversion of baseline data. Or, the Predictive Model may have low fidelity and the satellite has changed. 

Accordingly, the goal of sensor tasking is to collect data so as to enable the dual goals of assessment of change 

and/or improvement of Predictive Model as efficiently as possible.  

 

The motivation for the tasking method is from the maximum information entropy principle, which expresses the 

claim of maximum ignorance. The probability distribution function for a quantity of interest is chosen to be one that 

makes least claim to being informed beyond the baseline data [4]. The quantity of interest in sensor tasking is the 

definition of observation conditions; namely the direction of illumination and the view direction for the sensor. In 

this work, it is assumed that the effect of the illumination and observation conditions is captured by the value of a 

single entity, namely the orbit angle. The orbit angle is defined to be the projection of the sun-satellite-sensor angle 

in the orbital plane of the satellite. It is similar to the longitudinal phase angle, only difference being that the 

longitudinal phase angle is computed with respect to the equatorial plane. Or, for a satellite with a zero orbital 

inclination, the orbit angle is same as the longitudinal phase angle. This is a coarse yet practical approximation 

because a complete definition of the illumination and observation directions is a function of the geometry and 

orientation of the satellite solar panel and its body. At a minimum, it consists of four angles [5].  

 

We consider that the change may occur such that it may not be observable from any value of the orbit angle. This is 

because the change may cause minimal net change in the projected geometry of the satellite with respect to the sun 

and the sensor. The orbit angle at which the change may be manifested in terms of difference in its brightness is 

function of the change itself and is unknown a priori. Thus, the sensor tasking for the purpose of change detection 

can make no assumption with respect to the choice of the orbit angle. Alternately, the choice of an orbit angle for the 

next observation needs to be chosen as per a uniform probability distribution function. This strategy is postulated to 

maximize the amount of new information per observation as per the principle of maximum information entropy.  

 

We also note that the fidelity of the Predictive Model varies with the orbit angle. This is manifested in the random 

character of the Brightness Ratio versus orbit angle as shown in Fig. 2 - Fig. 4. The range of values for the 

Brightness Ratio is larger for S3 as compared to S1 and S2. This is related to the reflection phenomenology as a 

function of the orbit angle. For example, at intermediate values of orbit angle, the satellite brightness is commonly 

governed by diffuse reflection. This is because the specular behavior of the solar panels is at smaller orbit angles 

(closer to 0o), and the specular behavior off the fine body features is typically at larger orbit angles (closer to 90o). It 

is generally easier to attain higher fidelity for the Predictive Model under diffuse reflection conditions at 

intermediate orbit angles rather than its values closer to 0o or 90o. This is particularly when there is no self-occlusion 

caused by any fine features on the body in the projected view of the satellite with respect to the sensor.  

 

We also note that the fidelity of the Predictive Model varies with the orbit angle. This is manifested in the random 

character of the Brightness Ratio versus orbit angle as shown in Fig. 106 - Fig. 108. The range of values for the 

Brightness Ratio is larger for S3 as compared to S1 and S2. This is related to the reflection phenomenology as a 

function of the orbit angle. For example, at intermediate values of orbit angle, the satellite brightness is commonly 

governed by diffuse reflection. This is because the specular behavior of the solar panels is at smaller orbit angles 

(closer to 0o), and the specular behavior off the fine body features is typically at larger orbit angles (closer to 90o). It 

is generally easier to attain higher fidelity for the Predictive Model under diffuse reflection conditions at 

intermediate orbit angles rather than its values closer to 0o or 90o. This is particularly when there is no self-occlusion 

caused by any fine features on the body in the projected view of the satellite with respect to the sensor.  

 

Consider the situation when there was no change in the satellite. In such a case, the lack of conclusion in regards to 

NOM or ANOM for a satellite would depend on the fidelity of the Predictive Model. This is because the Predictive 

Model is utilized to predict the expected brightness of the satellite at point in the new data. If the fidelity of the 

Predictive Model is insufficient, the computed values of the Brightness Ratio at the new data points can be such that 

test statistic for the new data suggests a difference from the baseline data. This may be the case even though there is 

no statistically significant change.  

 

The Predictive Model could be improved when additional data is collected. Any collection of additional data needs 

to be such that it maximizes new information. In this regard, the fidelity of the Predictive Model as a function of the 

orbit angle is postulated as being inversely related to the new information generated if the sensor tasking was 

defined to collect new data at that orbit angle. This postulation may be interpreted by considering two cases for the 
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orbit angle, one where the fidelity of Predictive Model is high and the second where it is low. This may be idealized 

further as intervals of orbit angle values where the Brightness Ratio equals zero and nonzero, respectively. When the 

Brightness Ratio is zero, the expected value of satellite brightness is equal to the predicted value, or there is no new 

information in regards to the improvement of the Predictive Model. When the Brightness Ratio is nonzero, there is 

new information that is useful in order to improve the Predictive Model. Thus, it is postulated that the sampling of 

orbit angle values during the collection of additional data be inversely proportional to the absolute value of the 

Brightness Ratio in order to maximize new information per observation.  

 

 
Fig. 106. Satellite S1 r Values Versus Orbit Angle 

 

 
Fig. 107. Satellite S2 r Values Versus Orbit Angle 
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Fig. 108. Satellite S3 r Values Versus Orbit Angle 

 

Since S3 is the satellite for which we require more data, we will focus on S3 for the rest of this section. If the sensor 

was utilized in a staring mode (i.e. persistent observation), the sampling rate for the observation data would be 

uniform along the orbit angle axis. In such a case, the total new information would be proportional to the area under 

the curve of orbit angle versus the absolute value of the Brightness Ratio (i.e., r values). Accordingly, Fig. 109 

shows a plot of new information versus orbit angle for S3. The peaks of this graph are areas where the Predictive 

Model has lower fidelity, while the valleys are areas where the model has higher fidelity. Fig. 110 illustrates how the 

new information would accumulate if the sensor was to observe the satellite persistently. This graph is normalized to 

a maximum value of 1.0, which is meant to represent the totality of new information. We broke the total new 

information into 10% bins, which is meant to represent that persistent observations over each orbital angle bin 

would have the ability to provide 10% of the total new information. These bins are displayed in Fig. 111. Comparing 

Fig. 109 and Fig. 111, the smaller bins align with the areas with the most error.  
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Fig. 109. New information as a function of orbit angle 

 

 
 

Fig. 110. Accumulation of new information as a function of orbit angle 
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Fig. 111. Orbit Angle Bins for New Data Collection 

 

Consider a situation when the Predictive Model has limited fidelity and the satellite may have changed. For 

example, the lower fidelity of the Predictive Model could be caused by self-occlusion due to the fine features. Then 

the sensor tasking would have a joint goal of maximizing new information per observation for the purpose of 

improving the Predictive Model and/or detect change. The corresponding tasking strategy can be defined to combine 

the needs of the Predictive Model and change detection using a two-step approach as follows (Fig. 111):   

 

 The probability of selection of an orbital bin is equal. This is to maximize new information with respect to 

change detection.  

 The probability of selection of an observation condition within an orbital bin is uniformly distributed. This 

is to maximize new information with respect to the improvement of fidelity of the Predictive Model.  

 

The characterization of fine features using such a two-step sensor tasking strategy is a part of our future work.  

 

 

10.0 Ongoing work and closure  
 

This paper provides a statistical assessment technique for the resolution of multi-satellite cross-tag by making an 

adaptive use of sequential analysis techniques. The method for cross-tag detection and resolution is useful 

irrespective of the different types of cross-tag scenarios feasible for a cluster and when the signatures of the satellites 

have significant overlap. Although the technique is demonstrated for a three satellite cluster, it can be extended to 

clusters containing a larger number of satellites.  

 

The current work uses simplified composite hypothesis testing, which allows a decision to be made only when all 

tests agree. The next step is to enhance the composite test method by calculating the probabilities of all possible 

incorrect conclusions, so that the user can make more informed decisions about the status of the satellites. This will 

likely involve simulation due to the dependency of the hypothesis tests involved. .  

 

The current analyses assume an idealized cross-tag situation where the cross-tag in the new data does not change 

unless it is rectified. The next step is to extend the statistical assessment to the case of a switching or time-dependent 

cross-tag. This is when a single set of new data for a satellite is cross-tagged with different satellites.  

 

The current Inversion Model and Prediction Model use a 0th order two-facet model. The next step is to enhance the 

models to include the contribution of new data collected as per the principle of maximum information entropy in 

order to better account for the antennae, dishes and self-occlusions. 
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13.0 Appendix A: Notation 

Text notation: 

 

Brightness: Value of Brightness Data at a single data point 

Brightness Data: Single point brightness data point collected by a ground or space-based sensor during the routine 

synoptic search operation. This data is collected along with the angles only metric data 

Brightness Ratio: Ratio of observed Brightness to predicted Brightness 

Body: Body of a GEO satellite 

Change: Modification of state of a satellite from NOM to ANOM or vice versa. 

Change Detection: To recognize that the state of satellite has undergone Change 

Cluster Peer: A pair of satellite in a cluster can be cross-tagged 

NOM: Nominal status of a satellite. This is when the correlation coefficient between the observed Brightness and 

the predicted Brightness exceeds a user-defined threshold limit. 

ANOM: Anomalous status of a satellite. This is when the correlation coefficient between the observed Brightness 

and the predicted Brightness is below the user-defined threshold limit for NOM.  

Panel: Panel term for a GEO satellite (it combines the effect of both solar panels into a single term) 

PDF: Probability distribution function 

CDF: Cumulative distribution function 

Signature Data: A sequence of Brightness measurements collected by a dedicated sensor during a single pass for a 

target satellite. For GEO satellites, such data is collected at a frame rate such as one data point per minute, etc.   

 

Mathematics notation: 

𝑟𝑘 = ratio of observed Brightness of the satellite at pass k to predicted Brightness of the satellite at pass k. This ratio 

is defined only at the orbital location when Brightness data is collected 

Δ𝑟𝑘is the difference between 𝑟𝑘 and 𝑟𝑘−1 

𝑟̃ denotes the adjusted r value after it has subtracted µ and divided by 𝜎 

k = Index for an orbital pass number. The time slider origin is k = 0. Prior data is for k < 0. New data is for k ≥ 0.  

𝐼𝑂𝑘  is the observed single point brightness 

𝐼𝑀𝑘 is the expected single point brightness 

𝐸(𝑟𝑘) denotes the expected value 

𝛼 = the level of significance of the test = P(Type I Error) 

𝛽 = P(Type II Error) 

δ is the number of standard deviations that mean drift mu is away from null hypothesis mean drift 0 

P(NOM|rk) = Probability that satellite is NOM after pass k given the Brightness Ratio rk 

𝐻𝑜 denotes the null hypothesis 

𝐻𝑎  denotes the alternative hypothesis 

µ is the mean for the prior data  

𝜎 is the standard deviation for the prior data 

Ln denotes the use of a likelihood function 


